Self-organizing properties of triethylsilylethynyl-anthradithiophene on monolayer graphene electrodes in solution-processed transistors.
نویسندگان
چکیده
Graphene has shown great potential as an electrode material for organic electronic devices such as organic field-effect transistors (FETs) because of its high conductivity, thinness, and good compatibility with organic semiconductor materials. To achieve high performance in graphene-based organic FETs, favorable molecular orientation and good crystallinity of organic semiconductors on graphene are desired. This strongly depends on the surface properties of graphene. Here, we investigate the effects of polymer residues that remain on graphene source/drain electrodes after the transfer/patterning processes on the self-organizing properties and field-effect characteristics of the overlying solution-processed triethylsilylethynyl-anthradithiophene (TES-ADT). A solvent-assisted polymer residue removal process was introduced to effectively remove residues or impurities on the graphene surface. Unlike vacuum-deposited small molecules, TES-ADT displayed a standing-up molecular assembly, which facilitates lateral charge transport, on both the residue-removed clean graphene and as-transferred graphene with polymer residues. However, TES-ADT films grown on the cleaned graphene showed a higher crystallinity and larger grain size than those on the as-transferred graphene. The resulting TES-ADT FETs using cleaned graphene source/drain electrodes therefore exhibited a superior device performance compared to devices using as-transferred graphene electrodes, with mobilities as high as 1.38 cm(2) V(-1) s(-1).
منابع مشابه
Solution-processed n-type fullerene field-effect transistors prepared using CVD-grown graphene electrodes: improving performance with thermal annealing.
Solution-processed organic field effect transistors (OFETs), which are amenable to facile large-area processing methods, have generated significant interest as key elements for use in all-organic electronic applications aimed at realizing low-cost, lightweight, and flexible devices. The low performance levels of n-type solution-processed bottom-contact OFETs unfortunately continue to pose a bar...
متن کاملSolution-processable organic dielectrics for graphene electronics.
We report the fabrication, at low-temperature, of solution processed graphene transistors based on carefully engineered graphene/organic dielectric interfaces. Graphene transistors based on these interfaces show improved performance and reliability when compared with traditional SiO(2) based devices. The dielectric materials investigated include Hyflon AD (Solvay), a low-k fluoropolymer, and va...
متن کاملDiscerning Variable Extents of Interdomain Orientational and Structural Heterogeneity in Solution-Cast Polycrystalline Organic Semiconducting Thin Films
By spatially resolving the polarized ultrafast optical transient absorption within several tens of individual domains in solution-processed polycrystalline smallmolecule organic semiconducting films, we infer the domains’ extents of structural and orientational heterogeneity. As metrics, we observe variations in the time scales of ultrafast excited state dynamics and in the relative strength of...
متن کاملUnderstanding Heterogeneous Nucleation in Binary, Solution- Processed, Organic Semiconductor Thin Films
Heterogeneous nucleation is often the precursor to crystallization in solution-processed organic semiconductor thin films. Here, we study the efficacy of a series of nine small-molecule organic semiconductor additives in seeding the crystallization of solution-processable triethylsilylethynyl anthradithiophene (TES ADT). By systematically varying the concentrations of the additives in TES ADT t...
متن کاملInjection-modulated polarity conversion by charge carrier density control via a self-assembled monolayer for all-solution-processed organic field-effect transistors
We demonstrated modulation of charge carrier densities in all-solution-processed organic field-effect transistors (OFETs) by modifying the injection properties with self-assembled monolayers (SAMs). The all-solution-processed OFETs based on an n-type polymer with inkjet-printed Ag electrodes were fabricated as a test platform, and the injection properties were modified by the SAMs. Two types of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 5 22 شماره
صفحات -
تاریخ انتشار 2013